Research Paper On Cloudsim Wiki

Please, wait while we are validating your browser

  • 1.

    Tsai, W.T.; Shao, Q.; Sun, X.; Elston, J.: Real-time service-oriented cloud computing. In: 2010 6th World Congress on Services, Miami, FL, pp. 473–478 (2010). doi:10.1109/SERVICES.2010.127

  • 2.

    Feng, Y.; Zhijian, W.; Feng, X.; Yuanchao, Z.; Fachao, Z.; Shaosong, Y.: A novel cloud load balancing mechanism in premise of ensuring QoS. Intell. Autom. Soft Comput. 19(2), 151–163 (2013). doi:10.1080/10798587.2013.786968CrossRefGoogle Scholar

  • 3.

    Ibnouf, R.I.M.; Mustafa, A.B.A.N.: Bandwidth management on cloud computing network. IOSR J. Comput. Eng. (IOSR-JCE) 17(2), 18–21 (2015). (ISSN: 2278–0661)Google Scholar

  • 4.

    Singh, J.: Study of response time in cloud computing. Int. J. Inf. Eng. Electron. Bus. 5, 36–43 (2014). doi:10.5815/ijieeb.2014.05.06Google Scholar

  • 5.

    Vinothina, V.; Shridaran, R.; Ganpathi, P.: A survey on resource allocation strategies in cloud computing. Int. J. Adv. Comput. Sci. Appl. 3(6), 97–104 (2012)Google Scholar

  • 6.

    Lee, G.; Tolia, N.; Ranganathan, P.; Katz, R.H.: Topology aware resource allocation for data-intensive workloads. ACM SIGCOMM Comput. Commun. Rev. 41(1), 120–124 (2011)CrossRefGoogle Scholar

  • 7.

    Pawar, C.S.; Wagh, R.B.: A review of resource allocation policies in cloud computing. World J. Sci. Technol. 2(3), 165–167 (2012)Google Scholar

  • 8.

    Goudaezi, H.; Pedram, M.: Multidimensional SLA-based resource allocation for multi-tier cloud computing systems. In: IEEE 4th International Conference on Cloud computing, pp. 324–331 (2011)Google Scholar

  • 9.

    Kumar, K.; et al.: Resource allocation for real time cloudlets using cloud computing. In: Proceedings of 20th International Conference on IEEE Computer Communications and Networks (ICCCN), pp. 1–7 (2011)Google Scholar

  • 10.

    Endo, P.T.; et al.: Resource allocation for distributed cloud: concept and research challenges. IEEE Commun. Soc. 25(4), 42–46 (2011)Google Scholar

  • 11.

    Chen, Z.; Yoon, J.P.: Parallel, grid, cloud and internet computing. In: International Conference on P2P, pp. 250–257. IEEE (2010)Google Scholar

  • 12.

    Keahey, K.; Tsugawa, M.; Matsunaga, A.; Fortes, J.A.B.: Sky computing. IEEE Internet Comput. 13(5), 43–51 (2009)CrossRefGoogle Scholar

  • 13.

    Warneke, D.; Kao, O.: Exploiting resource allocation for efficient parallel data processing in the cloud. IEEE Trans. Parallel Distrib. Syst. 22(6), 985–997 (2011)CrossRefGoogle Scholar

  • 14.

    Wuhib, F.; Stadler, R.: Distributed monitoring and resource management for large cloud environments. In: 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011) and Workshops, pp. 970–975. IEEE (2011)Google Scholar

  • 15.

    Inomata, A.; Morikawa T.; Ikebe M.; Rahman, Md.M.: Proposal and evaluation of dynamic resource allocation method based on the load of VMs on IaaS. In: 2011 4th IFIP International Conference New Technologies, Mobility and Security (NTMS), pp. 1–6. IEEE (2011)Google Scholar

  • 16.

    An, B.; Lesser, V.; Irwin, D.; Zink, M.: Automated negotiation with decommitment for dynamic resource allocation in cloud computing. In: Conference at University of Massachusetts, Amherst, USA, pp. 981–988 (2010)Google Scholar

  • 17.

    Jung, G.; Sim, K.M.: Location-aware dynamic resource allocation model for cloud computing environment. In: International Conference on Information and Computer Applications (ICICA), pp. 37–41. IACSIT Press, Singapore (2012)Google Scholar

  • 18.

    Yanggratoke, R.; Wuhib, F.; Stadler, R.: Gossip-based resource allocation for green computing in large clouds. In: 7th International Conference on Network and Service Management, Paris, France, pp. 24–28 (2011)Google Scholar

  • 19.

    Gmach, D.; Rolia J.; cherkasova, L.: Satisfying service level objectives in a self-managing resource pool. In: Proceedings of Third IEEE International Conference on Self-Adaptive and Self-Organizing System, pp. 243–253 (2009)Google Scholar

  • 20.

    Minarolli, D.; Freisleben, B.: Utility-based Resource allocations for virtual machines in cloud computing. In: Computers and Communications (ISCC), pp. 410–417. IEEE (2011)Google Scholar

  • 21.

    Huu, T.T.; Montagnat, J.: Virtual resource allocations distribution on a cloud infrastructure. In: 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 612–617. IEEE (2010)Google Scholar

  • 22.

    Anbar, A.; Narayana, V.K.; El-Ghazawi, T.: Distributed shared memory programming in the cloud. In: 2012 12th IEEE/ACM International Symposium of Cluster, Cloud and Grid Computing (CCGrid), pp. 707–708. IEEE (2012)Google Scholar

  • 23.

    Wood, T.; et al.: Black box and gray box strategies for virtual machine migration. In: Proceedings of 4th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pp. 229–242 (2007)Google Scholar

  • 24.

    Huang, K.-C.; Lai, K.-P.: Processor allocation policies for reducing resource fragmentation in multi cluster grid and cloud environments. In: Computer Symposium (ICS), pp. 971–976. IEEE (2010)Google Scholar

  • 25.

    Banerjee, S.; Adhikary, M.; Biswas, U.: Smart task assignment model for cloud service provider. In: Special Issue of International Journal of Computer Applications on Advanced Computing and Communication Technologies for HPC Applications—ACCTHPCA, June 2012, pp. 43–46 (2012). (ISSN: 0975 8887)Google Scholar

  • 26.

    Banerjee, S.; Adhikary, M.; Biswas, U.: Advanced task scheduling for cloud service provider using genetic algorithm. IOSR J. Eng. 2(7), 153–159 (2012). (ISSN: 2250-3021)CrossRefGoogle Scholar

  • 27.

    Banerjee, S.; Adhikari, M.; Kar, S.; Biswas, U.: Development and analysis of a new cloudlet allocation strategy for QoS improvement in cloud. Arab J. Sci. Eng. 40(5), 14091425 (2015). doi:10.1007/s13369-015-1626-9. (ISSN: 1319-8025)MathSciNetCrossRefGoogle Scholar

  • 28.

    Banerjee, S.; Adhikari, M.; Biswas, U.: Design and analysis of an efficient QoS improvement policy in cloud computing, Service Oriented Computing and Applications, July, 2016, ISSN: 1863-2386 (Print) 1863-2394 (Online), Springer London. (Accepted, yet to be published) (2016)Google Scholar

  • 29.

    Banerjee, S.; Adhikary, M.; Mondal, D.; Biswas, U.: Service delivery improvement for the cloud service providers and customers. Int. J. Comput. Appl. 51(5), 20–23 (2012). (ISSN: 0975 8887)Google Scholar

  • 30.

    Ali, S.K.F.; Hamad, M.B.: Implementation of an EDF algorithm in a cloud computing environment using the CloudSim Tool. In: International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, 2015, pp. 193–198. doi:10.1109/ICCNEEE.2015.7381360 (2015)

  • 31.

    Shi, Y.; Lo, D.; Qian, K.: Teaching secure cloud computing concepts with open source CloudSim environment. In: IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, pp. 247–252 (2016). doi:10.1109/COMPSAC.2016.201

  • 32.

    Khatua, S.; Ghosh, A.; Mukherjee, N.: Optimizing the utilization of virtual resources in Cloud environment. In: 2010 IEEE International Conference on Virtual Environments, Human–Computer Interfaces and Measurement Systems, pp. 82–87 (2010)Google Scholar

  • 33.

    Nivodhini, M.K.; Kousalya, K.; Malliga, S.: Algorithms to improve scheduling techniques in IaaS cloud. In: 2013 International Conference on Information Communication and Embedded Systems (ICICES), pp. 246–250. IEEE (2013)Google Scholar

  • 34.

    Pasha, N.; Agarwal, A.; Rastogi, R.: Round robin approach for VM load balancing algorithm in cloud computing environment. Int. J. Adv. Res. Comput. Sci. Softw. Eng. IJARCSSE 4(5), 34–39 (2014)Google Scholar

  • 35.

    Li, J.; Feng, L.; Fang, S.: A Greedy-Based Cloudlet Scheduling Algorithm in Cloud Computing. Academy Publisher, New York (2014)Google Scholar

  • 36.

    Selvi, S.; Maheswari, R.; Kalaavathi, B.: Deadline cost based cloudlet scheduling using greedy approach in a multi-layer environment. Int. J. Comput. Trends Technol. (IJCTT) 7(2), 74–79 (2014)CrossRefGoogle Scholar

  • 37.

    Kapgate, D.: Improved round robin algorithm for data center selection in cloud computing. Int. J. Eng. Sci. Res. Technol. (IJESRT) 3(2), 686–691 (2014). (ISSN: 2277-9655)Google Scholar

  • 38.

    Amandeep, V.; Mohammad, Y.F.: Different strategies for load balancing in cloud computing environment: a critical study. Int. J. Sci. Res. Eng. Technol. (IJSREC) 3(2) (2014). (ISSN: 2278 0882)Google Scholar

  • 39.

    Mehdi, N.A.; Mamat, A.; Amer, A.; Abdul-Mehdi, Z.T.: Minimum completion time for power-aware scheduling in cloud computing. Developments in E-systems Engineering (DeSE), pp. 484–489. IEEE (2011)Google Scholar

  • 40.

    Malhotra, R.; Jain, P.: Study and comparison of CloudSim simulators in the cloud computing. Stand. Int. J. (The SIJ) 1(4), 111–115 (2013)Google Scholar

  • 41.

    Kaur, K.; Rai, A.K.: A comparative analysis: grid, cluster and cloud computing. Int. J. Adv. Res. Comput. Commun. Eng. 3(3), 5730–5734 (2014)Google Scholar

  • 42.

    Pagare, J.D.; Koli, N.A.: Design and simulate cloud computing environment using cloudsim. IJCTA 6(1), 35–42 (2015)Google Scholar

  • 43.

    Van den Bossche, R.; Vanmechelen, K.; Broeckhove, J.: Cost-optimal scheduling in hybrid iaas clouds for deadline constrained workloads. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD). IEEE (2010)Google Scholar

  • 44.

    Sindhu, S.; Mukherjee, S.: Efficient Task Scheduling Algorithms for Cloud Computing Environment. High Performance Architecture and Grid Computing. Springer, Berlin (2011)Google Scholar

  • 45.

    Li, J.; et al.: Feedback dynamic algorithms for preemptable job scheduling in cloud systems. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Vol. 1. IEEE (2010)Google Scholar

  • 46.

    Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.; Buyya, R.: CloudSim: A Toolkit for Modelling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. Wiley, Hoboken (2011)Google Scholar

  • 47.

    Uthaya Banu, M.; Saravanan, K.: Optimizing the cost for resource subscription policy in IaaS cloud. Int. J. Eng. Trends Technol. (IJETT) V6(6), 296–301 (2013). (ISSN: 2231–5381)Google Scholar

  • 48.

    Cloudlet (cloudsim 3.0 API): The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, The University of Melbourne. Retrieved from Retrived on Aug 14.

  • 49.

    Rawat, P.S.: Quality of service evaluation of SaaS modeler (Cloudlet) running on virtual cloud computing environment using CloudSim. Int. J. Comput. Appl. 53(13), 35–38 (2012). doi:10.5120/8484-2424Google Scholar

  • 50.

    Wickremasinghe, B.: CloudAnalyst: a CloudSim-based Tool for modelling and analysis of large scale cloud computing environments. MEDC Project Report, University of Melbourne, Melbourne, p. 44 (2009)Google Scholar

  • 51.

    Mahmood, Z.: Cloud Computing Challenges Limitations and R and D Solutions. Springer (2014). ISBN: 978-3-319-10530-7, doi:10.1007/978-3-319-10530-7

  • 52.

    Pop, F.; Potop-Butucaru, M.: Adaptive Resource Management and Scheduling for Cloud Computing. Springer (2015). ISBN: 978-3-319-13464-2, doi:10.1007/978-3-319-13464-2

  • 53.

    Han Y.H.; Park D.S.; Jia W.; Yeo, S.S: Ubiquitous Information Technologies and Applications. Springer, Dordrecht, eBook ISBN: 978-94-007-5857-5, doi:10.1007/978-94-007-5857-5

  • 54.

    Cluster-Defination of Cluster, Oxford Dictionary, Retrived on April 2017, From

  • 55.

    Magalhes, D.; Calheiros, R.N.; Buyya, R.; Gomes, D.G.: Workload modelling for resource usage analysis and simulation in cloud computing. Comput. Electr. Eng. 47, 69–81 (2015). doi:10.1016/j.compeleceng.2015.08.016CrossRefGoogle Scholar

  • 56.

    Amazon Elastic Compute Cloud, Wikipedia, Retrived on March 2017, From

  • 57.

    Xuejie, Z.; Zhijian, W.; Feng, X.: Reliability evaluation of cloud computing systems using hybrid methods. Intell. Autom. Soft Comput. 19(2), 165–174 (2013). doi:10.1080/10798587.2013.786969CrossRefGoogle Scholar

  • 58.

    Das, A.K.; Adhikary, T.; Razzaque, Md.A.; Hong, C.S.: An intelligent approach for virtual machine and QoS provisioning in cloud computing. In: The International Conference on Information Networking 2013 (ICOIN), pp. 462–467. IEEE (2013)Google Scholar

  • 59.

    Roy, S.; Banerjee, S.; Chowdhury, K.R.; Biswas, U.: Development and analysis of a three phase cloudlet allocation algorithm. J. King Saud Univ. Comput. Inf. Sci. (2016). doi:10.1016/j.jksuci.2016.01.003

  • Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *